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-- 
S I N G L E  P A R A M E T E R  

T E S T I N G  

"There is a better way to 
conduct testing" 

SUMMARY: This report gives the first phase results obtained on 

NAS8-11715 contract, in the area of single parameter testing. 

The main objective of the study is to put into operation better 

ways of testing transfer functions. The expected savings are 

faster checkout time, better accuracy, and less degradation of 

performance due to the testing. 

The result of the first phase study is - YES! We can test linear 

passive first and second order transfer functions. The savings 

are faster checkout time, faster isolation of failures, and less 

degradation of performance due to testing. 

The technical areas investigated have resulted in two techniques, 

which are directly applicable to the solution of single parameter 

testing of linear passive networks. These techniques are: 

1. Growing exponentials as a probing signal for 
parameter testing. 

2. Optimization of feedback control for system testing. 

-1- 



8 '  . 
Each of the preceding areas have their advantages. Growing ex- 

ponentials have the advantage of being able to measure many 

parameters ( 4  have been measured successfully, an upper limit 

has not been established) with one probing signal. Feedback 

control has the advantage of possibly less testing equipment, 

with measurement of the combined effects of many parameters (2 

parameter effects have been observed, an upper limit has not 

been established). 

What areas require more investigation? The growing exponential 

technique needs to be extended to third order systems. 

The optimization feedback technique needs to be investigated in 

more detail, so as to establish its limitations. 

The area of testing active networks needs to be investigated, 

so as to provide techniques in this area. 

Where are we going? The next phase will be to investigate the 

areas of active networks. This area was chosen so that in the 

third phase of the study, practical application of testing a 

particular real system will be accomplished. The other estab- 

lished applicable techniques which will be extended within the 

time and money available. 

-2 - 



SECTION 1 

INTRODUCTION 

The single parameter testing program was established to perform 

mathematical analysis on typical systems of varying complexity. 

The program will verify the applicability of single parameter 

testing to launch vehicle system checkout. 

The general technical approach of the study was limited to systems 

or devices for which continuous transfer functions can be written 

and restricted to their linear regions. 

ected on the identification of changes in the terms which compose 

the transfer function. 

Primary emphasis was dir- 

The approach used was to: 

1. Describe transfer functions and study the changes in 

behavior with incremental changes in its parameter, 

i.e., terms. 

2. For each transfer function, investigate the measur- 

3. 

ability of performance degradation due to changes in 

the transfer function. One output of this task will 

be determining the feasibility of GO, NO-GO, decisions 

based on parameter testing. 

Investigate possible theories of measuring single para- 

meters to accomplish the measurement of incremental 

changes, and performance degradation due to transfer 

function changes. 

-3- 



. 
The study is divided into three specific tasks: 

Phase A: Simple first, second, and third order linear 

passive networks whose transfer functions resemble those 

of useful systems, were to be selected for detailed in- 

vestigation. The results will be used to extend the test- 

ing to higher order systems. 

Phase B: The investigation and selection of criteria 

described in Phase A. This is to include the linear 

active networks. 

Phase C: With the guidance and approval of the NASA 

technical representative, an actual subsystem will be 

chosen for analysis. The transfer function will be de- 

rived, and the techniques developed in Phase A and B are 

to be applied to the subsystem. 

-4- 
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SECTION 2 

THEORIES INVESTIGATED 

I 

The application of various theories were investigated. These 

areas are listed below with reason for discarding or further 

investigation. 

THEORY CONCLUSION 

a. 

b. 

C. 

d. 

Growing exponentials 
as a probing signal 
for single parameter 
testing. 

Optimization of feed- 
back control for sys- 
tem testing. 

Impulse testing. 

Correlation testing. 

A detailed analysis has led to 
the measurement of first and 
second order systems, The re- 
sults are favorable, and imply 
the testing of many parameters 
with one probing signal, in a 
short period of time. 

A preliminary analysis on a 
first order system had favorable 
results. More investigation is 
necessary to establish the limits 
of this technique. 

Impulse testing was reviewed and 
discarded for two reasons: 
1. The application of impulse 

testing is limited to low 
frequency systems, because 
the sampling of impulse re- 
ponses by computers is limited 
by the sampling frequencies. 

2. Impulse testing has a degra- 
dation effect upon the equip- 
ment being tested, because of 
the "shock" imposed by the 
impulse. 

Correlation testing has the same 
disadvantages as impulse testing. 
1. The application is limited to 

low frequency systems , which 
can be sampled by computers. 

2, The time required for corre- 
latior! testing is excessive, 
a correlation test requires 
the time average of two sig- 
nals for each data point. 

-5- 



e. Network synthesis 
using sinusoidal 
measurements. 

At least 10 or more data 
points would be necessary 
for measuring the correlation 
function. 

These types of measurements are 
characterized by extended periods 
of time. The sinusoidal signals 
must be varied over a variety of 
frequencies to synthesize the net- 
work. 

f. State variable esti- This technique requires an exten- 
mation (parameters sive amount of sample data, and 
are considered to be analysis time by a computer. The 
a state variable and relationships between the states 
the state is estimated are estimated, and may have statis- 
by statistical synthe- 
sis of noise outputs). 

tical variations. 16 
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SECTION 3 

GROWING EXPONENTIALS 

I J 

S IGNALS TRANSFER 
FUNCTION 

i A 

3.1 INTRODUCTION 

- 
c FILTERS 

I 

Growing exponentials appear to have the best liklihood of suc- I 

I 
cessfully solving the problem of single parameter testing. In ~ 

the following pages, the theory will be presented which allows 

testing by growing exponentials. ~ 

The use of growing exponentials has been investigated by Huggins, , 

et al, in such applications as electrocardiography and in iden- 

tif ication of static nonlinear operators, and in system identi- 

fication problems. (1-15) , 

This method was actively studied in detail with the objective of 

applying it generally to transfer functions. The general instru- 

mentation scheme for measurement is shown in Figure 3-1. 

Figure 3-1 
Instrumentation Scheme 
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In a generalized point of view, the signals are a collection of 

vectors in lln" dimensional space. Each of these vectors are 

orthogonal, so that each are independent. 

If the transfer function can be expanded in terms of orthogonal 

linear stationary operators, then the measurement of these oper- 

ators can be accomplished by measuring the projections of the 

signal vectors on to the linear operator space. 

For example, assume that the operator space is as illustrated in 

Figure 3-2 B 

t '  
r f  

\ Orthogonalized 

Some Transfer 
of 

I ,' 
/ 

m a  

Portions 

Functions 

Figure 3-2 

where a and 8 are two orthogonalized portions of some transfer 

function. Also assume that the signals are any orthogonal set 

as illustrated by the dashed lines in Figure 3-2. 

of these signal vectors on the operator space will, when multi- 

plied by scale factors, measure the magnitude of U and 8 .  N o r -  

mally a and 8 will be proportional to a change in some parameter. 

The projections 

3 . 2 ORTHOGONALIZED SIGNALS 

To obtain orthogonalized signals, it is sufficient to have the 

time average of the interproduct of the signals zero. 

be the i- signals, then 

Let fi(t) 
th 

-8- 



+ OD f;(t) f .(t) dt = 0 s -  J 

when i # j, otherwise 

* 
fi(t) fi(t) dt = 1 

(3-1) 

Now in order to obtain orthogonal signals, exponentials may be 

considered. 

of orthogonal functions. These include relatively short time 

bases, and capabilities of being matched to the system to be 

tested, 

Exponentials have several advantages over other sets 

Orthogonalization of the exponentials may be accomplished by the 

Kautz method. 10 This method allows the approximation of the impulse 

response of any network by sums of orthogonalized signals. These 

signals, for a transfer function with all real poles and a higher 

order denominator than numerator, become: 

*JS)  = J - s  n -sn 

where Sn = complex frequency with a negative real part 
th of the n- exponential component 

- 
Sn = conjugate of Sn 

For example, let the transfer function be 

(3-3) 

1 H ( S )  = 
S + K1 

-9- 
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Then t h e  set of or thogonal ized  exponen t i a l s  are: 

a + )  = 1/q 1 

S + K1 

. (s + K , I 3  . I 

. 
In  t he  t i m e  domain t h i s  se t  of s i g n a l s  are: 

A I 

(3 -5  1 

. . 
0 

I n  the fo l lowing  text  w e  w i l l  be concerned w i t h  n e g a t i v e  t i m e  

f u n c t i o n s  and sampling a t  t i m e  zero. When cons ide r ing  nega t ive  

time, t h e  set of or thogonal ized  components become 

- S + K 1  

. ( -  S + K,)L 

(3-10) 

(3-11)  

. A. 

0 . . 
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And in the time domain 

(3-12 ) 

(3-13) for t < 0 

When the transfer function has complex poles, then the ortho- 

gonalization takes the form of 10 

(3-14) 
where v = 1, 2 - - - n/2 

and the poles are at 

S = -a - jPv and zv = -a + jp,. 
V V V 

(3-15) 

The upper (plus) sign pertains to @ and 

the lower sign pertains to QZv(s). 
2v-1 

3.3 ORTHOGONAL SEPARATION OF THE SIGNALS 

To separate these orthogonalized signals, we only need to accom- 

plish the integral 

( 3-16 ) 

This can be performed by performing the contour integration in 

-11- 



the  frequency domain, i.e., Parseval's Theorem for aperiodic 
20 

functions , 

(3-17 ) 

* 
Note tha t  ( P i  (-S) i s  a real  f i l t e r  which has an impulse response 

f .  ( t )  i n  positive time, The integration i n  the complex plane is 

equivalent t o  sampling the  results a t  t i m e  t = 0. 
1 

3 . 4 ORTHOGONALIZED TRANSFER FUNCTION 

Consider a system H ( S )  as a function of i t s  parameter variations 

around some specified nominal design values. Then a Taylor's 

Series Expansion can be w r i t t e n  as: 

2 a1 + ..,. H ( S )  = Ho + =5!.ul + U a 2 + , , *  4 a 2H 
3 2a 

(3-18) 
1 aa2 

w h e r e  Ho = t he  specified nominal system and 

= H i ( S )  = first pa r t i a l  derivative of the  system a a, 
t h  I 

with respect t o  t h e  i- parameter. 

Thus, for  small deviations i n  the parameters, the  actual system 

may be decomposed into the  sum of the  pa r t i a l  systems, H i ( S ) ,  

Now, let  any transfer function be 

N 
c cn 'n 

w h e r e  n = 0, 1, 2 ,  3 and H ( S )  = zi:i = = 
N -. 

= 1, or do = 1 c O  
dn Sn c 

n = O  ( 3-19 ) 

-12- 



To test  and de termine  t h e  t r a n s f e r  f u n c t i o n ,  f i rs t  the  N ( S )  

and  t h e n  D ( S )  is  tested by proper c o n t r o l  of i n p u t  s i g n a l s .  

H ( S )  can  be expanded i n  t e r m s  of the Taylor  Series Expansion 

for s m a l l  v a r i a t i o n s  i n  cn and  dn as 

n n 
a H  

a dn n Ad c a H ( S ) A c  + c H ( S )  = H o ( S )  + n n = O  n = o acn 

(3-20) 

S i n c e  H ( S )  is  the summation 

can  measure first, t h e  A c n  and then, the  AdS1 and combine the  ans-  

w e r s  t o  o b t a i n  AH (S ). 

of t h e  changes i n  cn and dn, w e  

N o t e  also tha t  

(3-21) 

n N N 
c - Sn N ( S )  - c -  a H  H ( S )  - -  

n = 0 [ D ( S ) l  2 n = o bcn 
c a H ( S )  = 

n = O  a dn 

(3-22) 

aHO is or thogonal  ac < 
Any g iven  

A 

t o  any  other par t ia l  derivative 

is  or-hogonal  t o  any  other pa r t i a l  a di L i k e w i s e ,  any g,ven 

der ivat ive a H ( q  
a d ;  

Th i s  property a l l o w s  independent measurement of the re la t ive m a g -  

n i t u d e  of a l l  t h e  c i l s  or d i l s  when o n l y  the c i l s  or d i g s  are 

-13- 



measured. The a b s o l u t e  magnitude can be determined by no t ing  

+ D--l 
c 

I 1  
1 rq- ---- 

3.5 PARAMETER EFFECTS UPON THE MEASURED SIGNALS 

Each of the t e s t i n g  s i g n a l s w h e n  passed  through the s 

J L 

r s t e m  t 

Q 

ill 

be fi l tered by each p a r t i a l  system. The o u t p u t s  of these par t i -  

c u l a r  systems are combined and t h e n  passed through t h e  o u t p u t  

f i l ters.  The  process i s  i l l u s t r a t e d  i n  F igure  3-3. 

n Q I 

I 

L--J 

Q i l  
I 

The mathematical  d e s c r i p t i o n  of  p a s s i n g  t h e  i n p u t s  through the 

7 

E s t i m a t o r  M’-l n 

p a r t i c u l a r  system, f i l t e r  and estimator w i l l  now be g iven  i n  

de ta i l .  This  a n a l y s i s  w i l l  be g e n e r a l  and apply  t o  ~ t -  order t h  

Sampler . 

t r a n s f e r  func t ions .  

F igure  3-3 

T e s t i n g  S igna l  Be ing  
Processed a 

0 

-14- 
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A representative of the signals appearing at the output of the 

H.(s) component system is 
1 

Hi(S) [Fl (3-23) 

where [F] is a row matrix of the input probing signals. 

The output at the first filter is 

* 
@1 (-SI Hi(S) [Fl 

th Likewise, the out at the j- filter is 

(3-24) 

(3-25) 

which is a row matrix denoted H 
j' 

The collection of these row matrices denotes a modulation matrix, 

Ha describes the effects of H.(S) on the outputs of the filters 
Ha - 1 

under the influence of the input probing signals. 

be to sample outputs of these filters at a particular time. 

The object will 

These 

samples will represent the variation in the parameters tested. 

The output of j- th filter can  be obtained at any particular time 

by performing the following integration in the complex plane: 

(3-26) 
where 7 is a delay variable. 

The reader may recognize this equation as the transform of the 

convolution integral, i.e., 

(3-27) 

-15- 



* 
where h.(t) is the weighting function of the filter Hi(S) @ ( - s )  

3 3 
and fi(t) is the is input signal. 

Letting T = 0:  the equation gives the value of a sample of the 

output signal at 7 = 0. Thus we obtain, 

(3-28) 

These values of h (now) represent the results of the input 

signal acting on the transfer function H , ( S )  and the measuring 
jk 

.I. * 
filter @ (-SI at the time 7 = 0. Forming the 

these values of h as the elements, we have: 
j 

jk 

I 

- 
hln 

h2n 
I 
I 

mn h 

where each row represents the output of a 

(3-29) 

I 

column reflects an input signal. 

Now form a column matrix C 

[J 

Ha matrix with 

filter and each 

(3-30) 

which represents the magnitude of the probing signal components. 

An additional requirement from practical considerations is that 

-16- 



energy  be c o n s t a n t ,  v i z ,  

. 
U 

..I 

0 

1 U 

. . . 
a 

L n  

N 
c c2 = 1. (3-31) 

n 
n = l  

Mul t ip ly ing  t h e  H, m a t r i x  by t h i s  column m a t r i x  [ C ]  w i l l  give 

a column m a t r i x  

(3-32 ) 

which is  the representative of the s i g n a l  appear ing  a t  t h e  

ou tpu t  of each f i l t e r  due t o  the pa r t i a l  system H i ( S ) .  

The c o l l e c t i o n  of these columns may be a r ranged  t o  f o r m  a matrix, 

M, called the modulation matrix.  

B y  a r r a n g i n g  the parameter d e v i a t i o n s  as a column array 

[AI  = 

(3-33) 

(3-34) 

The t o t a l  system response ,  G ,  can be r e p r e s e n t e d  as 

[ G I  = [ri) . [A] = [Mol a. + [M1l a l  + . . . . (3-35 ) 

The va lues  of a. through an can  be determined by s o l v i n g  t h i s  

m a t r i x  equa t ion ,  i.e. , 

( 3-36 ) 

S i n c e  [ M - l I  is  composed of the i n p u t  s igna l  magnitude [ C ] ,  these 

magnitudes can be adjusted t o  maximize the estimate of the 

-17- 



parameter when they a re  subjected t o  noise. 

The minimization of white noise can be accomplished from leas t -  

square s t a t i s t i c a l  theory. The c r i te r ion  selected fo r  opti-  

mization is  the  minimizat ion of the covariance of the e r ror  i n  

the  parameter estimates, as expressed by the m i n i m u m  variance 

estimator 

(E M ) - l  

This can be minimized by maximizing the  determinate 

(3-37 ) 

3.6 COMPONENT VALUES AND TRANSFER FUNCTION PARAMETERS 

Testing the t ransfer  function coeff ic ients  allows determination 

of system parameters, which a re  important t o  proper action. Also, 

the determination of component values, can be obtained from t h e  

t ransfer  function coefficients. Each of the coefficients a re  re- 

la ted  by a l inear  equation t o  the component values i n  a c i rcu i t .  

For example, take the c i rcu i t  i l l u s t r a t ed  i n  Figure 3-4 and an-  

alyze the t ransfer  function i n  t e r m s  of the  component values: 

Figure 3-4 R-C Circuit  
--I- 

T "  R 

The 

The 

t h e  

t ransfer  function is 

1/cs - 1/c C - - 0 H ( S )  = dls + do - + R  - RS + 1/C (3-38)  
cs 

measurement of t he  coefficient dl w i l l  determine R, w h i l e  

measurement of t he  coefficient do, w i l l  determine 1/C. 

-18- 



. 
do = - 1 

C 
(3-39 ) 

dl = R 

For m o r e  complex t r a n s f e r  f u n c t i o n s ,  t h e  same r e s u l t s  hold. 

Gene ra l ly ,  

d = f n  (R,  C, L )  and, n 
(3-40) 

The s o l u t i o n  of these equat ions  w i l l  de te rmine  the component 

v a l u e s  of t h e  c i r c u i t .  

3.7 ILLUSTRATIVE EXAMPLE 

The example used t o  demonstrate  the method of growing expo- 

n e n t i a l s ,  is i l l u s t r a t e d  i n  the fo l lowing  c i r c u i t  diagram. 

Figure 3-5 

This c i r c u i t  has a n  impedance, Z ( S ) ,  of 

1 
dlS + do 

= 1 +  1 E(S) = z ( s )  = 1 + cs + Io (3-41) 

To test  t h i s  complex impedance t ransfer  f u n c t i o n ,  f i rs t  f i n d  

t h e  p a r t i a l  d e r i v a t i v e s  of t h i s  t r a n s f e r  f u n c t i o n ,  w i t h  respect 

t o  the parameters t o  be tested, 

the  c o e f f i c i e n t s  of the denominator, i re. ,  C ,  and G. L e t  t h e  

The parameters  t o  be chosen are 

nominal va lues  of C and G be u n i t y ,  t h e  par t ia l  systems become 

-19- 
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(3-43 ) 

To explore or test  these par t ia l  systems, make use of two orthog- 

onal probing signals which match the pa r t i a l  system, Notice 

t h a t  the par t ia l  systems are orthogonal and therefore, independent. 

The probing signal is determined by using the method described by 

Kautz, This example uses the Kautz relation, Equation 3-3, 

The representatives of the backward orthogonal probing signals 

i n  t h e  complex plane a re  

ipl(s) = dT 1 
-s + 1 

In the t i m e  domain these signals a re  

(3-44) 

(3-45) 

(3-46) 

(3-47 ) 

The m t r k  representative on a backward basis of the two component 

systems fgr the  two parameter system, is found by applying equation 

3-28. Which gives the relationships 

-20- 



The o p t i m u m  probing  s i g n a l  components are found by forming the 

columns g iven  by equa t ion  3 - 3 2  

(3-49) 

( 3-50 ) 

The modulation m a t r i x  is formed by the c o l l e c t i o n  of t he  Ma 

columns, thus ,  

1 I 2 

- cos Y 2 s i n  Y' - cos Y 

- s i n  Y - s i n  P 
M = %  

C G 

The maximum value of t h e  de t e rmina te  

(EM( = 1 ~ 1 ~  a s i n  Y 

occu r s  when 

Y = n/2 

The optimum prob ing  s i g n a l  i s  

JT (1 + 2 t )  e t  for  t < 0 

The estimator matrix M - ~  is 

( 3-51 ) 

(3-52 ) 

(3-53) 

(3-54) 

1 2 
( 3-55 ) 
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3.8 GENERALIZED SOLUTION O F  FIRST ORDER TRANSFER FUNCTIONS 

The g e n e r a l  f i r s t  order t r a n s f e r  f u n c t i o n  is  

(3-56) 

B y  d i f f e r e n t a t i o n  of 

w e  o b t a i n  

= Hc ( S )  
a =0 0 

aG(S) = Hd ( S )  
a 0 

t h i s  func t ion  w i t h  respect t o  the c o e f f i c i e n t s ,  

(3-57 ) - S - 1  do'dl - - -  - 
dlS + d dl 0 

dlS + do 

1 - - 
diS + do 

-s (cls + co) 
- - -  

[dlS + dol2 

c s + c o  - 1 
2 

- 
[dlS + dol 

(3-58) 

(3-59) 

(3-60) 

Two t e s t i n g  exponen t i a l s  w e r e  determined by the Kautz r e l a t i o n .  

These became 

- 1 
'1") - J2 'o/dl -S + do 

(3-61) 

(3-62 ) 

w h e r e  @(S) i s  the r e p r e s e n t a t i o n  of t h i s  nega t ive  time f u n c t i o n  

i n  the frequency domain. 
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In the time domain 

d ~. 

(3-63 ) - O t  d d  
for t < 0 fl(t) = J 2 o/ 1 e dl 

- t  
c1 + 2t3P dl for t < 0 d d  f2(t) = J 2 o/ 1 

(3-64) 
An approximation to these growing exponentials was found to 

operate successfully on the analog computer. 
(3-65) 

The matrix representation of the signals appearing at the filter 

outputs of the partial systems are: 

H 

H 
cO 

+ I 0 1 
2 -  

1 
2dl dl 

1 - -  
2dl 

+ 1  1 T' - -  2dl 

0 1 + -  
2d0 

(3-67 ) 

(3-68) 
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- - -  
0 

Hd 

c d + co dl 1 0  
9 

0 
4 dlL d 

0 

1 C 

- 3  2 
dl 

c d  1 o + %  
2 

dl do 

C 
0 

+ do + co dl I 
4 doL dl 

J 

(3-69) 

(3-70) 

Forming t h e  m a t r i x  M and maximizing i t s  de terminant  leads t o  t h e  

r e s u l t  t h a t  o n l y  t h e  second s i g n a l  f (t) is  required. 2 

= 0 = cos Y 
Y = n/2 c1 

(3-71) 
C2 = 1 = s i n  Y 

The e s t i m a t o r s  for t h e  parameters 

3 3  -2 do dl 
-1 - - 

2 2  2 2  
=1 do - =o dl 

1 2 

6 

+4do 

3 

-24- 

and dn are ‘n 

Ac 1 

AC 
0 

1 

I 
c1 do + co dl 

2 
do dl 

do + co dl 
2 1 

,dl do 

(3-72 ) 

2 

cO + -- 2 

C 1  -2 - 2 
dl 

(3-73) 

Adl 

* 



Normalizing t h e  estimator is accomplished by dividing each row 

by the parameter which that  row 

-1 
Md 

-1 
MC 

Thus, 

1 
- 2do dl 

c1 dl - co dl 

- 2do dl 

=1 dl - co dl 

1 2 

2 dl 
c1 c1 

- -  2 dl - -  

d 4 0  d 2 0  + - -  - -  
co 3 co I 

estimates. 

2 
2 

2 2  2 2  c1 do - c 

- 4c0 do dl 

0 dl 

4cl dl do 2 

2 2  2 + 
do - co dl 

(3-74) 

“,/dl 

do/d 0 

(3-75) 

using t h i s  resu l t  for estimation and f ( t )  as  a probing 2 

signal,  any f irst  order transfer function can be measured t o  

l/cl , and Ac w i t h  one probing signal. A d i  Ado Ac - 
o/co obtain - 

dl ’ do 

3.9 MPER IMENTAT ION 

The growing exponential method w a s  the  first technique t o  be i n -  

vestigated experimentally. The problems chosen for  experimenta- 

t ion  w e r e  

and H ( S )  = 1.5s + + 1s . (3-76) 1 
H ( S )  = cs + 

The probing signals for these c i r cu i t s  w e r e  generated and supplied 

t o  an analog s imula t ion .  Various methods of generating these 
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signals were tried, and one proved to be successful, This method 

consisted of time shifting the time axis, so that we could gener- 

ate the rising exponentials with controlled unstable circuits, 

For example, suppose we wished to simulate the signal, 

d d  flW = J2 o/ 1 

First we shifted the time 

(3-77 ) 

axis by five time constants to obtain, 

a 
U d d  - 0 (t - 5 o/ 1) 
1 f o r O < t < 5 d  dl d d  d d  d 

f(t - 5 i/ 0) = J 2 o/ 1 e 
0 

(3-78) 

Notice that the result is a positive time function. T h i s  time 

function was then generated on the analog computer. 

greatly concerned that this approximation would give bad results. 

We were 

However, it turned out that the results were very good, and the 

approximation apparently had very little effect. 

In continuing our effort to experimentally test the transfer 

function, we constructed two models of the system, One model 

represented the normal transfer function. The second model re- 

presented the system in which the parameters could be varied. 

Then, we simulated the filters, control, and sampling logic. 

Figure 3-6 

computer. Notice from the figure that the simulation includes 

sufficient generality to be applicable to two examples. 

illustrates the simulation set up on the analog 
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3.9.1 The F i r s t  Example 

The first  transfer function, 

1 
SC + G 

H ( S )  = (3-79) 

was tested. Resul ts  of the estimator as  a function of time is 

given i n  Figure 3-7. For parameter increments of 356, i.e., 

3%, 6%, 9%, 1256, 1596, 3.876, etc. The measurement of the  parameters 

w e r e  taken when the probing signal stopped. Notice that  when only 

one parameter is  varied, t h e  estimate of the other signal is ap- 

proximately zero. Notice also tha t  an incremental change i n  a 

parameter r e su l t s  i n  a similar incremental change i n  the estimate. 

The estimates w e r e  good up t o  approximately a 40% change i n  the 

parameter. A f t e r  4056, there was a considerable interaction be- 

tween the  estimators for  C and G. This was not a surprising re- 

s u l t ,  because our approximation of the t r a n s f e r  function was 

based on a Taylor Series Expansion, which is  only accurate w i t h i n  

a limited region, when a l l  the higher order terms are  neglected. 

3.9.1.1 Noise Experiments 

A f t e r  concluding th i s  test and establishing that  we could measure 

the changes i n  C and G, we  decided a noise analysis was necessary. 

The noise analysis was conducted by inserting independent band 

l i m i t  noise into both the  nominal and actual system under test. 

W e  t hen  applied the  input  signal and observed the  r e s u l t s  of 

measuring a parameter variation of 10% i n  the capacitor, C. 

Signal t o  noise ra t io  was measured by the r a t io  

peak voltage of signal 
r m s  noise voltage 
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Figure 3-7 AR Parameter variations with no variations i n  
AC and AC Parameter with no variations i n  AR. 



From t h i s  noise analysis, (Figures 3-8,9,10) it w a s  concluded that  

the tes t ing signal should be greater than 26  db i n  voltage above 

the rms noise level of e i ther  the nominal or measured system. 

With a 26 db voltage r a t i o  the range of indication of C was 

10% - + 1.5%. 

3 . 9 . 1 . 2 Time Varying Parameters 

To study the effects  of time varying parameters, the capacitance 

C was allowed t o  vary sinusoidally, as 

C + AC s i n  wet. 
The radian frequency wo was varied and the indications of AC 

observed. A 10% change i n  the parameter, C ,  w a s  allowed, and 

the frequency w a s  induced a t  w0 = -25, - 5 ,  l., 2., 3.77, 10 and 

100, (Figure 3-11). At wo = 3.77 the  amplitude of C w a s  varied 

over the values, 5%, lo%, and 20%, (Figure 3-12). The resu l t s  

of t h i s  study show tha t  i n  tests of t i m e  varying parameters, good 

indications can be measured a t  radian frequency below one half of 

the location of the transfer function pole. 

3.9.2 The Second &ample 

The second t ransfer  function was tes ted by using the  general 

relationship developed f o r  

1.5s + 15 C I S  + c 
0 -  - 

d,S + de s + l  
I U 

where 

c = 1.5 1 

c = 15 
0 

dl = 1 

d = 1  
0 
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Figure 3-10' 
N o i s e  Analysis varying AC, w i t h  S/N = 20 db 
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Figure 3-11 Time varying parameter analysis 
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Figure 3-12 Time varying parameter analysis  



The experiment was connected on t h i s  t ransfer  function t o  

es tabl ish the  measurability of coeff ic ients  i n  the  numerator 

and denominator. The previous example only measured t h e  e f fec t  

of coeff ic ients  i n  t he  denominator. 

AC The probing signal was applied and the  estimates of 

AC l/cl and Ado/do, 

Figures 3-13, 3-14. I n  these figures the outputs of the 

estimators a re  plotted against each other. The t i m e  function 

w a s  stopped when the  input probing signal was shut  off .  The 

lobing on the time traces give the  value of a normalized change 

i n  each parameter. Each l i n e  on t h e  graph i s  a 1% change. The 

results of the estimation were orthogonal as expected. A per- 

centage change i n  one parameter resulted i n  an indication of 

t ha t  parameter and pract ical ly  no change i n  the other. 

o/co, 

Adl/dl w e r e  made. The resu l t s  a re  given i n  

There was a considerable amount of interaction be tween the i n d i -  

cations of the C I S  and d ' s .  Notice i n  Figure 3-15 tha t  a - 10% 

variation i n  c and do resu l ted  i n  a measurement of 
0 

Ado - 
do 

Adl - 

dl 

AcO 

- -  

- -  

- =  
C 
0 

- -  Acl - 

+ ,037 

+ .1 

- -05 

. 15 
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The r e s u l t s  of t h e  measurements on c and d indicated tha t  t h e  

t ransfer  function w a s  

1.725s + 14.25 - - 1.57s + 13.0 
1.1s + 1.037 s + -94 

Thus, there was approximately a 

+2% error i n  measuring c1 

+4% error i n  measuring do and 

-4% error i n  measuring c 
0- 

The r e s u l t s  are  favorable and seem to allow decision on a go-no go 

basis. If the tolerance limitation can be established on a l l  of 

the parameters, then experimental data can be taken t o  establish 

limits on the  values of the estimator. 

For example, i f  10% tolerances are imposed on a l l  the  parameters, 

then a c i rc le  i n  both plots, as i l lus t ra ted  below woulq separate 

a good c i rcu i t  from a bad circui t .  

I Good/Bad Circuits I 
Figure  3-16 

If an indication was bad from both estimators, t he  c i rcu i t  could 

be considered bad. 

3.10 SECOND ORDER TRANSFER FUNCTIONS 

The analysis of a second order transfer function was conducted. 

I n  t h i s  analysis the testing of only two parameters w e r e  
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investigated to determine applicability of the growing exponential 

method, All of the math is included to illustrate the complexity 

and length of the method. The second order transfer function 

chosen was 

s + 5  c s + c  
- - 0 H(S) = 7 

SL + dlS + do sL + 2s + 10 

This transfer function can also be written as 

c s + c  
0 H(S) = 

( s  + a ) 2  + 82 

The partial derivatives of H(S) with respect to the parameters 

c and c are the component partial systems corresponding to 1 0 

1: c and c 
0 

aH - 
a cO 
- -  

From complex 

the backward 

n - 
poles at Sv = -8 V - jPv and sv = -a V + jBv(v=1,2,,,,, 2 )  

time probing signals are found from the Kautz relation, 

where v = 1, 2 - - - n/2. 

The upper (plus) sign pertains to QZvPl and the lower 
sign pertains to Q (SI. 2v 
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1' 
The probing signals a re  then 

(-s +da' + 8') 
(-s + q 2  + 82  

- 
y s )  = d2av 

and 

(4 - & 2  + 6 2 )  ( -s  - a )  2 + 8  2 

[(-s + a ) 2  + , 2 1 2  
a 2 ( S )  = d2 

The matrix components for  the pa r t i a l  systems are  

The matrix elements for  the par t ia l  system - a H  a re  found as follows: 
acl 

dS S 2 - J z i  (s  + / a 2  + , 1 
- 2 %  I C  2 ( s  + c r ) 2  + B ( s  + % I 2  + B 2  (-s + a )2  + ,* 

This integral is  evaluated by integrating around the l e f t  half-  

plane, finding the residues i n  the l e f t  half-plane poles. The 

residue i n  the  second-order pole a t  - a - j 8  i s  

R1 = l i m  - d s(s2 - a 2  - B ) - 1 2 
- - -  

S +  - U  - j B  dS (S + a - jB l2  [ (s  - a ) 2  + 823 1Q 
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t 
t 

The r e s i d u e  R2, a t  -a + j S  is t he  complex con juga te  of R1: 

The sum of the r e s i d u e s  is - 1 

8u 
, and so 

2 
.I I ) = -  I 

('hllICl = ( -  2 a) ( -  - S a  * 4 u '  

- -  - 1 r G r ( S  + J a 2  + P 2 )  S 

( s  + a ) 2  + P 2  ( s  + a I 2  + S 2  2 n j  J c  

Jzi (-s - a ) 2  + S 2  (-s - J a 2  + fI2 dS 

= o  

( S )  dS 1 
- - -  

a cO 

- &T ( sa . )2  + p 2  ( s J a 2  + p2)  S 

-&L I (s + a ) 2  + B 2  32 ( s  + a ) 2  + e 2  

( -s  + a ) L  + 8" 
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S(S2 - a2  - p 2 )  dS 

= o  

- 1 dzi (s-a.)2 + 82 (s-& + 8 2 )  S 

[(s + a ) 2  + 8 2 1 2  -2rrj s c  
( s  + a ) 2  + 8 2  

[(- s + a ) 2  + , 2 1 2  
dS 

2, dS 2 - -  - -2a f s(s2 - a - 8 
[ ( s  + aI2 + P 2  l 2  (s - a ) 2  + p 2  

2rrj J c  

The m a t r i x  e lements  for a H  - 
a c ,  are found i n  the s a m e  way. The re- 

A 

s u l t i n g  matrices are 

H =  
c1 

and  

0 1 
4a 
_I 

0 

0 

1 
4a 
- 

J 

1 

4(a2 + P 2 )  
-44- 
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i Since there are only two probing signals, the coefficients of 

Q 1 ( S )  and @ , ( S )  are chosen to be cos 

order example. The calculation of the parameter modulation matrix 

and sin Y! as in the first 

M is as follOwS: 

M = [Mc Mc 1 1 0  

M - 
- O l  

1 
4a 
- 

0 

sin 
4a 

1 

[ ::: :] 

1 lcos I 1 -a +./d2+ p 2  
4 P 2  + B 2 ’ q a  1 a 2 + B  

0 
4 (a2 1 + B 2 )  J Isin 

r i 

sin Y! 

4(a2 + e 2 )  
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Then 

0 , 05406 

0,02500 
L 

M =  

s i n  Y 
4a J 

cos Y 
4(a2 + B 2 )  

s i n  Y 

4(a2 + S2) 

The m a x i m u m  v a l u e  of t h e  determinant  o f l d o c c u r s  when Y! = 90°, 

S u b s t i t u t i o n  of Y = 90° i n  the expres s ion  for  M then  yields 

M =  

0 

1 
4a 
- 

- a  +/a2 + p 2  
4u (a2 + S2) 

1 
4(a2 + e 2 )  

In  the p r e s e n t  example dl = 2 and do = 10, so that  a = 1 and 

B = 3 .  

Then 

M =  

0 

0,2500 
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-1,849 4.000 

( M ) - I  - - 
18, 49 0 

The testing of this second order transfer function was conducted 

on the analog computer. 

establish feasibility of testing second order transfer functions. 

The main purpose of the test was to 

The probing signal was constructed by time shifting, The trans- 

fer function and filters were simulated. The simulated filters 

were complicated by the complex pole of the transfer function. 

The probing signal also was more complicated and required more' 

generation equipment. 

The results of the experimentation were good, and we could mea- 

sure parameter variations in c and c1 independently, The fol- 

lowing two figures 3-18 and 3-19 illustrate the data obtained, 

The parameter variations are for 2 lo%, 2 20%, 2 30%- 

3-18 the co was varied, while c1 was held at its nominal value. 

In figure 3-19, co was held constant while c1 was varied, 

trace in the middle of the figure is the optimum probing signal. 

0 

In figure 

The 

This concluded the work done on second order transfer functions. 

The calculation of the estimators for do and d 

The calculation of these estimators is even more complicated. 

are, however, confident that measurement of these parameters is 

within our capabilities. We conclude that second order transfer 

functions can be measured using growing exponential methods. 

was not completed, 1 
We 

One other point of interest indicated in both figures 3-18 and 
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I '  
3-19 shows that sampling time for second order systems may not 

be as critical as first order systems. Both tests clearly show 

an increased amplitude along the entire functions, and this may 

possibly be considered in a Go-No-Go Test Scheme. 
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SECTION 4 

OPTIMIZATION OF FEEDBACK CONTROL 

4.1 INTRODUCTION 

The testing of system performance by feedback control has a poten- 

tial possibility of providing rapid test of operation with rela- 

tively small amounts of equipment, when compared to the method of 

growing exponentials. 

The basic concept of optimization of feedback control for system 

performance testing is illustrated in Figure 4-1. 

L 

1 I of output I 
Basic Concept of 
Optimization 

of 
Feedback Control 

Figure 4-1 

The transfer function H ( s )  has a mathematical description called 

the "dynamic process." The inputs or independent variables of 

the dynamic process are the "control signals, I' ml(t), m2(t), . . . 
%(t). 

are called the response signals ql(t), q2(t), . . . qQ(t). 
The outputs, or dependent variables, of dynamic process 

Because the response signals may not be physical variables, a 
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second set of outputs is associated with the dynamic process. 

These outputs are called the "state signals" Xl(t), X2(t), 

X,(t). State signals require a careful definition, since they 

are not usually associated with frequency-domain design techniques. 

For all dynamic processes described by ordinary differential equa- 

tions, a finite number of variables uniquely determine the dis- 

tribution of energy or state of the system. The minimal number 

of signals required to define the state of the dynamic process 

is equal to the order of the differential equations which describe 

the system or dynamic process, 

. , , 

With readers who are familiar with analog computer simulations, 

the outputs of the integrators used to solve a system of diffe- 

rential equations are state signals, 

While the mathematical model could be expanded to analyze systems 

with multiple inputs and multiple outputs, the testing transfer 

function, as defined in the single parameter study, is limited to 

one input m(t> and one output q(t), The filtering of the output 

could result in more outputs as in the growing exponential theory, 

in this case there is one input and multiple outputs from filtering 

stages , 

A convenient format for writing the description of the dynamic 

process, or transfer function in terms of the defining state 

signals is 
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I 
I 

i where 

I 

which e q u i v a l e n t  t o  the set of f irst  order d i f f e r e n t i a l  equa t ions ,  

The "response  equat ion ' '  i s  r e l a t e d  t o  the s ta te  v a r i a b l e s  by 

w h i c h  i s  e q u i v a l e n t  t o  t h e  set of equa t ions  

n = 1 , 2 , - - , Q  
w h e r e  

I n  o r d e r  t o  c l a s s i f y  the use of t h i s  n o t a t i o n  suppose t ha t  the  

fixed number of t he  c o n t r o l  s y s t e m  i s  described by the t r a n s f e r  

f u n c t i o n  E -  1 
T- 

n =  o 
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where q ( s )  is the output Laplace transform of ql(t), m,(s) is 1 
the input Laplace transform of the input m (t) and S is the 

1 
complex frequency variable. 

lity. 

By making dN = 1 we lose no genera- 

By cross-multiplication the transform is equivalent to 

N N - 1  

1 dn q(n) (t) = c 
n = l  n = o  

in t h e  time domain. In addition, a new variable x (t) is intro- 

duced so that the above equation reduces to 
N 

N 

n = o  

N -  1 

n = o  

Finally the addition variables are introduced so that 

ii (t) = X (t) n = 2 , 3 ,  . . .  N n n - 1  

and then the equation for m,(t) reduces to 

Likewise , 
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An analog computer simulation of this transfer function can now 

be written as 

Figure 4-2 

Analog Computer Simulation 

This simulation represents a generalized transfer function where 

the c's and the coefficients in the numerator, and the d's are 

the coefficients in the denominator, 

The performance specifications of the system can be assumed (and 

should be) written in terms of the errors between actual, and de- 

sired responses as a matter of choice, 

which minimizes or maximizes this criterion is desired. 

Therefore, a control ml(t) 
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I '  
The instantaneous indications incurred in the system are calculated 

in terms of some measure called a "performance measure." (Some- 

times referred to as an error measure). The performance index 

is the total performance incurred in the system over the present 

and future time where the control system operates. This perfor- 

mance index (error index) is found by integrating the performance 

measure 

where p(0) the performance measure is 

In the single parameter testing problem,this theory has an appli- 

cation in possibly two ways. The first is to form a performance 

measure which gives an indication of the change in parameter or 

parameters. The second is to form a performance measure which 

will give an indication of the sensitivity of the output to a 

change in a parameter or parameters. Other performance measure- 

ments may also be possible. 

4.2 PARAMETER DEVIATION MEASURE 

The performance measure for the system could be written in terms 

of parameter changes by defining an additional set of state vari- 

ables. One state for each parameter 
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x(t), + 2 

. 

. 

. 

C 
0 

=1 

C N- 1 

0 
d 

dl 

+ l s n s 3 N  

The Performance measure could be 

n = 3 N + 1  
P 

~~ 

U 
0 

1 a 

U N- 1 

U N 

a 
2 N + 1  

2N-  1 a 

- 1  

( a ) ,  Q2 (o), . . . @ where the Q1 

t 0 T and T is some future time. 

(a) are weighting factors, when n 

There is a great deal of information on the solution of Optimal 

control for this type of performance measure. 

created by squaring the difference between the measured parameter 

xn(t) and the desired parameter an has been studied by many engi- 

neers, and scientist. Dynamic Programming, Parametric Expansion, 

and Calculus of variations are all methods applied to the solution 

of this problem. 

The "quadratic" form, 

18 
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4.3 A SENSITIVITY MEASURE 

The performance measure could also be formed by a combination of 

sensitivities of the output q (t) to the parameter considered. 1 
As in the growing exponential case, the partial systems were probed 

by an input signal and measurements made on the output. These 

partial systems are sensitivity measures. Formulating a performance 

measure in terms of the sum of the sensitivities is the same as in- 

vestigating the change in the first order terms of the Taylor series 

when the particular systems are normalized. 

The definition of sensitivity to be used is 

The performance measure would then become 

4.4 ILLUSTRATIVE EXAMPLE 

For illustration of the possibilities of optimum feedback control, 

the following example will use, as a performance measure, the sum- 

mation of the sensitivities with respect to the parameters. 

Let the transfer function to be tested be 

H ( s )  = 
dl s + do 
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The analog simulation of this transfer function is illustrated 

in Figure 4 - 3 .  

Figure 4-3 

Analog Simulation of Transfer Function 

The state equations describing this transfer function are 

fk (t) = -x(t) do + m(t) 

The sensitivity of q with the parameters Co and do are, 

The performance measure is 

The performance index is therefore; 
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J ' [ s  9 +sq]dt = J ' [ s  9 +sq]dt 
C 

0 0 C 0 d 0 
t 

where t, present time, is  assumed to be zero. 

This problem is a particular class of optimization problem. The 

solution is of the singular form, as solved by Johnson and Gibson. 19 

Using the Johnson and Gibson method of solution, the Hamiltonian 

function is formed 

H = 1 pi ki (i = 0, 1, 2, . . . n) 
where 

= Lagrange multiplier function Pi 
k = The system equation i 
n = Number of system equation, and 

ko(t) = is the performance measure 

xo(T ) = performance index 

xo(o) = 0 

Therefore, the Hamiltonian function becomes 

The ajoint equations are 

-Po = 0 ... po = constant = 1 
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and t h e  Hamiltonian f u n c t i o n  can t h e n  be w r i t t e n  as  

H = I + m(t) F 

The c o n d i t i o n s  for a maximum can be found by setting 

. . 0 .  

I = I =  I . . . = O  

. 0 .  

F = F =  F . . .  = o  

w h e r e  

I = 0 i m p l i e s  

F = 0 i m p l i e s  

Therefore ,  

1 k ( t )  
0 

d x ( t )  = 

The s o l u t i o n  for  the c o n t r o l  v a r i a b l e  can now be o b t a i n e d  from the 

system equa t ion  
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1 '  
f(t) = -x(t) do + m(t) 

f(t) = -G(t) + m(t> 

m(t) = +2k(t) = +2 do x(t) 

The solution of the equation 

can be determined using Laplace transforms 

do x(s) - s x(s) - x(0) = 0 

x(s) = + x(0) 
S - d  

0 

+ do t 

therefore, + do t m(t) = + 2x(o) do e 

Thus, the optimum input signal is a growing exponential. The 

testing of the transfer function is accomplished as in Figure 4-4. 

IC = x(0) 

-t------ - - L - i i l - '  Figure 4-4 
-~ 

Testing of Transfer Function 

x(o) is the necessary initial condition of x(t) at t = 0, and the 

feedback is positive, therefore, causing a growing exponential to 

be the output and input. 

Applying portions of the theory of growing exponential% the out- 
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1 '  . 
put can be filtered and sampled at the proper instant so that 

the sample value is unity. 

Let q(t) = c x(-a) e + do (t) be defined for negative time, 

-a < t < 0. Then the filter which matches this is 
0 

* 1/ co Q ( - 5 )  = 
S + do q 

Sampling at time t = 0 is equivalent to 

where h(t) is the impulse reponse of 

* 

With the filter and sampling, a measure of the total system per- 

formance will be established. 

different from unity by a given percentage, the circuit could be 

classified--failed. 

If the output of the filter is 

The extension of the procedure to higher order systems is desirable 

to investigate feasibility and limitations. 
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SECTION 5 

CONCLUSION AND RECOMMENDATIONS 

1. It has been proven that the Taylor series expansion is valid 

and can be used for measuring system changes. 

2, In the growing exponential method, the mathematics involved 

in obtaining an estimate of the parameter changes is lengthy, 

and has been the biggest problem. 

3.  It ha5 been proven that measurements can be taken with noisy 

parameters and noisy signals. 

4. Knowledge and understanding of the basic measuring process 

has been obtained. 

5. Absolute measurement accuracy is a function of system com- 

plexity, as illustrated by the result of the two first order 

transfer functions examined. 

6. For the particular problem examined, good results were obtained 

using the optimum feedback control method, 

RECOMMENDATIONS 

The growing exponential method needs to be expanded to higher than 

second order systems. 

The feedback control method needs more investigation to determine 

the feasibility and limitations of the approach. 

Active networks need to be investigated so that techniques will be 

available in Phase I11 f o r  implementation. 
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